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into other classes of problems. Our results indicate that we were very successful on both
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INTRODUCTION

The diversity maximization problem can be stated as follows. Consider a set of elements

denotedby s,. keR= {1,2,.‘.,1’}. The objective is to select a subset of size m, where m is strictly less than
n, to maximize the diversity of the elements chosen.

To express the objective function formally, we associate a measure of diversity d,.,. with each pair of

elements s;and s, ; thatis, d, is some function of the elements s, and s ,, k € R, which is selected by the

decision maker according to the context. Then the problem can be represented:
MaxD :max x, = ZZd,.jx,x, = xDx
ieN jeN ’
subject to

Zx/. =m

JjeN
where d./‘/‘ =0 and X; is a binary variable denoting whether or not element j is chosen to be a member of the

selected subset.

The MaxD model is quite general and is capable of representing problems from a wide variety of areas. In
spite of the apparent simplicity of its formulation, the model contains an unsuspected capacity for handling
multiple considerations of considerable complexity. Included among these are situations where the goal is not
merely to select elements that are diverse, but that also satisfy required levels of quality along multiple
dimensions.

We begin by sketching some of the general areas of diversity optimization where the maximum diversity
concept is critically important.

1. Environmental Balance; Ecological systems depend on diversity for survivability. Considerations of diversity
maximization are crucial for establishing systems that are viable, robust and balanced.

2. Medical Treatment. Combating diseases, both by preventive planning and after the onset of iliness, is
enhanced by programs that offer more diverse lines of defense in order to combat the broadest spectrum of
potential disease causing agents. '

3. Genetic Engineering. Recombinant DNA and RNA applications yield a richer field of outcomes by designs
that generate greater number of alternatives, and where those alternatives, in turn, embody greater diversity
in their underlying structure.

4. Molecular Structure Design; The quest for improved molecular structures, which affect fields ranging all the

way from medicine to metallurgy, depends on finding stable ways to fit molecular shells, and to appropriately

position component molecules in available candidate locations. Processes to achieve this have so far been

limited by the range of diversity in the elements that are generated and interrelated by standard approaches.




5  Agricultural Breeding Stocks: In both animal and plant genetics, the goal of obtaining new varieties by
controlled breeding strategies is aided by drawing on breeding stocks with desirable qualities of
diversity. Better ways of characterizing and generating subsets of stocks with maximum diversity
directly contribute to this goal.

6 Right Sizing the Firm; Organizations that need to engage in "downsizing” are at risk of creating critical
skill and knowledge gaps when employees with very similar profiles are eliminated. The adverse loss of
institutional knowledge can be mitigated by developing a downsizing plan designed to maximize the
diversity of those who are retained with the firm.

7  Composing Jury Panels. The pursuit of a fair and complete hearing of the evidence brought against a
defendant is best served when the case presented is viewed and analyzed from diverse points of view.
This ideal is approached by selecting jurors from a pool of qualified citizens with the goal of maximizing
the diversity of those chosen.

The applications mentioned above have a common theme of harvesting information from a data base to
assist in selecting elements with the greatest variety of characteristics. In such applications, the MaxD model
serves as an interface between the data base housing the raw data and the decision maker. Implementing the
model constitutes an advanced form of data mining by revealing information in the form of optimal solutions —
solutions not observable directly from the data in the absence of the model.

MODEL EXTENSIONS

The basic diversity model, MaxD, is robust enough to represent a wide range of
problems. Nonetheless, further considerations can arise in certain applications that require additional constraints
to be added to the model. If these new constraints are linear, they can be accommodated via quadratic
penalties within the basic MaxD framework; i.e., the further constrained model can be re-cast into the form of
MaxD and solved by the method illustrated in this paper. The paper by Kochenberger, Alidaee and Amini (1998)
discusses such re-formulations in general. We illustrate some useful possibilities of this type by the examples

below.

Reformulation Example 1.

Suppose that two elements, which may be quite different from each other on most attributes, are
unacceptably close on some critical attribute — so much so that we want to require that not both elements be
chosen. Denoting the elements by i and j, we can preclude both from being chosen by imposing the constraint

x, +x; <1.

Such a constraint is not explicitly accommodated by the MaxD model. However, we can readily handle the

constraint by introducing the penalty term
Pxx;

and subtracting it from the objective function, where P is a suitably chosen positive constant. Since we are

maximizing, not both x; and x; will receive a value of 1 in an optimal solution.

Denoting by M the set of element pairs that require such mutually exclusive conditions, our modified

problem can be written




max x, = xDx — P Zx,.xj = xQx

(i.j)eM

subject to

N

in =m

=
By absorbing the quadratic penalty terms into the matrix D (to produce the matrix Q), we retain the form of
the original model, MaxD, which enables our tabu search method to be applied without modification. The
parameter P must be large enough to force the desired result. Any value greater than an upper bound on
the original objective function will clearly work. However, much smaller values have proven successful in

practice.

Reformulation Example 2.

The mutually exclusive relationships considered in the preceding example are a special case of a
more general type of relationship encountered in a variety of application settings. For example, costs may
be attached to the elements to be selected, and a budget limit may be imposed by means of a general linear
inequality. Similarly, measures of quality may be associated with the elements, and a linear inequality can
be introduced to assure the elements chosen will satisfy an overall quality level. (Multiple measures and

inequalities can be introduced to handle definitions of quality of different types.)

A variety of other considerations may likewise lead to further constraints in the form of linear
inequalities or equations. In general, linear inequalities over zero-one variables with integer coefficients can
be transformed into equations by identifying appropriate bounds on associated slack variables, and then

replacing these slack variables by equivalent expansions of zero-on variables.

Whenever the constraining relationships can thus be represented by a system of linear equations in the
binary variables, a quadratic penalty (of slightly different construction than the one considered in the

previous example) can be employed to incorporate the relationships into the form of the basic MaxD model.

To illustrate the approach, consider the further constrained model of the form

max x, = xDx

subject to

i=

Ax=5b

where the equality system Ax = b represents the additional relationships that need to be taken into account.

Taking P, as before, to be a suitably chosen positive penalty, we can re-write the foregoing model as

max x, = xDx — P*(A4x - b) (4x - b))
=xDx+xZx+c

=xQ0x+c




subject to

X,» =m
=

where the matrix Z and the additive constant c result directly from the matrix multiplication indicated. Thus we
are back once more to our basic MaxD model, disclosing its broad applicability to DDM problems. This

reformulation again affords the opportunity to exploit these problems with our tabu search approach.

APPROACH: (SOLUTION METHODOLOGY)

The MaxD model belongs to a class of NP-hard problems, and thus no method is known to exist that is
guaranteed to be able to find an optimal solution in “better than exponential” time. In fact, methods that can be
proved to converge are unable to find and verify optimal solutions for many problems of realistic sizes within
reasonable time limits. Consequently, except for small instances, such problems are preferably approached by
heuristic methods rather than exact (theoretically finite) methods.

The literature on MaxD contains few papers of a computational nature and the methods reported have
been tested on rather small problem instances only. In the original exposition of the model, Kuo, Glover and
Dhir (1993) present an equivalent linear mixed integer zero-one formulation of MaxD and demonstrate its use on
a small example problem. This approach has the advantage of lending itself to readily available, optimal
seeking branch and bound algorithms. However, this approach is not viable for problems large enough to be of
significant practical interest.

More recently, Ghosh (1996) presents a randomized greedy heuristic for the problem, and Glover, Kuo
and Dhir (1998) give several constructive and destructive heuristics. All these methods have been shown to
produce high quality solutions on small test problems (30 to 40 variables) where optimal solutions are known.
The virtue of these previously reported methods lies in their simplicity. The downside is that for a problem
instance of greater dimension, they lack the “intelligence” to navigate a complicated solution space
characterized by strong local optima.

The approach we take in this work employs a basic version of tabu search (TS) to guide our search of
the solution space. The added search sophistication of TS notably enhances our ability solve problems of much
greater dimension and difficulty than is possible by lower level heuristics alone. Our tabu search implementation
to solve the MaxD model is a variation of the method we have developed and extensively tested for solving the
unconstrained binary quadratic program. Detailed descriptions of the method can be found in Glover,
Kochenberger and Alidaee (1998) and Glover, Kochenberger, Alidaee, and Amini (1999). Below we give a brief
overview of the method.

Tabu Search Overview

Our method is centered around the strategic oscillation approach, which constitutes one of the primary
strategies of tabu search. The variant of strategic oscillation we employ alternates between constructive phases
that progressively set variables to 1 (whose steps we call “add moves”) and destructive phases that
progressively set variables to 0 (whose steps we call “drops moves”). To control the underlying search process,
we use a memory structure that is updated at critical events,

which are identified by conditions that generate a subclass of locally optimal solutions. Solutions corresponding




to critical events are called critical solutions. For the maximum diversity problem, we modify the definition of a
critical event to stipulate that such an event occurs when an add move during a constructive phase or a drop
move during a destructive phase yields a trial solution with exactly m variables equal to 1.

A parameter span is used to indicate the amplitude of oscillation about a critical event. We begin with span
equal to 1 and gradually increase it to some limiting value. For each value of span, a series of alternating
constructive and destructive phases is executed before progressing to the next value. At the limiting point, span
is gradually decreased, allowing again for a series of alternating constructive and destructive phases. When
span reaches a value of 1, a complete span cycle has been completed and the next cycle is launched.

Information stored at critical events is used to influence the search process by penalizing potentially
attractive add moves (during a constructive phase) and inducing drop moves (during a destructive phase)
associated with assignments of values to variables in recent critical solutions. Cumulative critical event
information is used to introduce a subtle long term bias into the search process by means of additional penalties
and inducements similar to those discussed above. A complete description of the framework for the method is

given in Glover, Kochenberger, Alidaee and Amini (1999).

ACCOMPLISHMENTS: (Computational Expereince)

We have successfully applied our method to many problem instances. Here we summarize our results

from randomly generated problems of size 100, 300, 500, 1000 and 2000 variables. These problems are
substantially larger than those reported earlier in the literature. Prior to this study, the largest problem tested
had just 100 variables.

For each problem size, five instances of the problem were considered, each with a different value of m.

Our test problems were 100 % dense (off diagonal) and the d” values were randomly generated between 10

and 50. (Our method is not restricted to require the d,.,. coefficients to satisfy sign conditions such as

nonnegativity, however.) Results from our runs are shown in Table 1.

TABLE 1. Test Problem Results

# vars #TS Soin Solns
(n) M cycles Time Opt?
100 10, 15, 20, 25, 30 20 2 sec (each) *
300 30, 45, 60, 75, 90 50 15 sec (each) *
500 50, 75, 100, 125, 150 100 58 sec (each) *
1000 100, 150, 200, 250, 300 100 194 sec (each) *

2000 200, 300, 400, 500, 600 200 16 min (each) *

* Optimal solutions not known

As indicated above, we solved a total of 25 random instances of sizes ranging from 100 to 2000 variables.
For each size, five different values of "m” were considered as shown in the table above. For all problems, the

g;j values were chosen from U(-50,50). Transformation #1 was used with P = 2n. Qur tabu search heuristic

was run for a fixed number of cycles, terminating in each case with a feasible solution. Optimal solutions for




these problems are not known. However, we have also solved much smaller problems for which optimal
solutions are known and in each such case our approach was successful in finding the optimal solution. All runs
were made on a Pentium 200 PC.

Prior to this paper, the largest instances reported in the literature were of size n = 100. Our results greatly

expand the state of the art and illustrate a solution capability much in excess of that reported by others.

PORTABILITY OF SOLUTION METHOD

The solution method developed and tested here for the maximum diversity problem can, via simple
reformulation methods, be applied to a wide variety of other important problem classes. We have, for instance,
successfully applied it to graph coloring problems, clique partitioning problems, and a variety of assignment
problems. This common solution approach suggest a connectedness among these disparate problems not

previously noted (or exploited) in the literature. Further exploration of this common framework is a major part of

our on-going research.

CONCLUSIONS:

The diversity maximization model, which can be thought of as a data mining tool (Diversity Data Mining,

DDM), makes it possible to identify subsets of populations that maximizes measures of diversity, and has
important applications in a wide variety of areas. The MaxD diversity model we have identified as a foundation

for DDM applications gives a means to extract information in a form and quality not otherwise available.

To give these applications practical significance, we have identified a special solution method based on
tabu search. Our computational testing shows that this method quickly obtains high quality solutions to problems
of dramatically greater size than previously tested in the literature. Such an ability is crucial for handling

problems that arise in real world settings.

in addition, we have shown how extensions of the basic model can readily be reformulated to permit
relationships of diverse structure and complexity to be captured within the same model framework. Our
introduction of a model for diversity data mining, and the demonstration that it can be solved effectively to yield a
useful practical tool, opens the door to studies for assessing the potential of DDM in a wide variety of

applications.

Finally, we have indicated that the basic solution procedure designed for MaxD can be used to solve other
important combinatorial problems. Thus, our work here can be leveraged to yield efficient solution procedures

in other areas.

SIGNIFICANCE:

The significance of our work is two-fold. First we have developed and tested a new solution procedure for

the diversity maximization problem that dramatically increases the size of problem that can be solved in
practice. Secondly, we have shown how the solution methods developed here are portable into other areas

given simple re-formulation procedures. This second development is a least as important as important as the




